Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Adv ; 10(12): eadk1278, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38507481

RESUMEN

Studying placental functions is crucial for understanding pregnancy complications. However, imaging placenta is challenging due to its depth, volume, and motion distortions. In this study, we have developed an implantable placenta window in mice that enables high-resolution photoacoustic and fluorescence imaging of placental development throughout the pregnancy. The placenta window exhibits excellent transparency for light and sound. By combining the placenta window with ultrafast functional photoacoustic microscopy, we were able to investigate the placental development during the entire mouse pregnancy, providing unprecedented spatiotemporal details. Consequently, we examined the acute responses of the placenta to alcohol consumption and cardiac arrest, as well as chronic abnormalities in an inflammation model. We have also observed viral gene delivery at the single-cell level and chemical diffusion through the placenta by using fluorescence imaging. Our results demonstrate that intravital imaging through the placenta window can be a powerful tool for studying placenta functions and understanding the placental origins of adverse pregnancy outcomes.


Asunto(s)
Placenta , Placentación , Embarazo , Femenino , Ratones , Animales , Placenta/diagnóstico por imagen , Microscopía/métodos , Imagen Óptica , Microscopía Intravital
2.
J Biomed Opt ; 29(Suppl 1): S11521, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38323297

RESUMEN

Significance: Photoacoustic microscopy (PAM) offers advantages in high-resolution and high-contrast imaging of biomedical chromophores. The speed of imaging is critical for leveraging these benefits in both preclinical and clinical settings. Ongoing technological innovations have substantially boosted PAM's imaging speed, enabling real-time monitoring of dynamic biological processes. Aim: This concise review synthesizes historical context and current advancements in high-speed PAM, with an emphasis on developments enabled by ultrafast lasers, scanning mechanisms, and advanced imaging processing methods. Approach: We examine cutting-edge innovations across multiple facets of PAM, including light sources, scanning and detection systems, and computational techniques and explore their representative applications in biomedical research. Results: This work delineates the challenges that persist in achieving optimal high-speed PAM performance and forecasts its prospective impact on biomedical imaging. Conclusions: Recognizing the current limitations, breaking through the drawbacks, and adopting the optimal combination of each technology will lead to the realization of ultimate high-speed PAM for both fundamental research and clinical translation.


Asunto(s)
Microscopía , Técnicas Fotoacústicas , Microscopía/métodos , Estudios Prospectivos , Técnicas Fotoacústicas/métodos , Análisis Espectral , Rayos Láser
3.
ACS Biomater Sci Eng ; 9(8): 4607-4618, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452737

RESUMEN

Recently, various nanomaterials based on hydroxyapatite (HAp) have been developed for bioimaging applications. In particular, HAp doped with rare-earth elements has attracted significant attention, owing to its enhanced bioactivity and imaging properties. In this study, the wet precipitation method was used to synthesize HAp codoped with Yb and Gd. The synthesized Ybx-Gdx-HAp nanoparticles (NPs) were characterized via various techniques to analyze the crystal phase, functional groups, thermal characteristics, and particularly, the larger surface area. The IR783 fluorescence dye and a folic acid (FA) receptor were conjugated with the synthesized Ybx-Gdx-HAp NPs to develop an effective imaging contrast agent. The developed FA/IR783/Yb-Gd-HAp nanomaterial exhibited improved contrast, sensitivity, and tumor-specific properties, as demonstrated by using the customized LUX 4.0 fluorescence imaging system. An in vitro cytotoxicity study was performed to verify the biocompatibility of the synthesized NPs using MTT assay and fluorescence staining. Photodynamic therapy (PDT) was also applied to determine the photosensitizer properties of the synthesized Ybx-Gdx-HAp NPs. Further, reactive oxygen species generation was confirmed by Prussian blue decay and a 2',7'-dichlorofluorescin diacetate study. Moreover, MDA-MB-231 breast cancer cells were used to evaluate the efficiency of Ybx-Gdx-HAp NP-supported PDT.


Asunto(s)
Nanopartículas del Metal , Iterbio/química , Gadolinio/química , Durapatita/química , Medios de Contraste/química , Nanopartículas del Metal/química , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/terapia
4.
Photoacoustics ; 29: 100456, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36785577

RESUMEN

In this paper, we propose an efficient label-free in vivo photoacoustic (PA) imaging of melanoma using a condensed near infrared-I (NIR-I) supercontinuum light source. Although NIR-II spectral window is advantageous such as longer penetration depth compared to the NIR-I region, supercontinuum light sources emitting both NIR-I and NIR-II region could lower the efficiency to target melanoma because of low optical power density in the melanoma's absorption spectra. To exploit efficient in vivo PA imaging of melanoma, we demonstrated the light source emitting from visible (532-600 nm) to NIR-I (600-1000 nm) by optimizing stimulated Raman scattering induced supercontinuum generation. The melanoma's structure is successfully differentiated from blood vessels at a high pulse energy of 2.5 µJ and a flexible pulse repetition rate (PRR) of 5-50 kHz. The proposed light source with the microjoules energies and tens of kHz of PRR can potentially accelerate clinical trials such as early diagnosis of melanoma.

5.
J Adv Res ; 41: 23-38, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36328751

RESUMEN

INTRODUCTION: The advanced features of plasmonic nanomaterials enable initial high accuracy detection with different therapeutic intervention. Computational simulations could estimate the plasmonic heat generation with a high accuracy and could be reliably compared to experimental results. This proposed combined theoretical-experimental strategy may help researchers to better understand other nanoparticles in terms of plasmonic efficiency and usability for future nano-theranostic research. OBJECTIVES: To develop innovative computationally-driven approach to quantify any plasmonic nanoparticles photothermal efficiency and effects before their use as therapeutic agents. METHODS: This report introduces drug free plasmonic silver triangular nanoprisms coated with polyvinyl alcohol biopolymer (PVA-SNT), for in vivo photoacoustic imaging (PAI) guided photothermal treatment (PTT) of triple-negative breast cancer mouse models. The synthesized PVA-SNT nanoparticles were characterized and a computational electrodynamic analysis was performed to evaluate and predict the optical and plasmonic photothermal properties. The in vitro biocompatibility and in vivo tumor abalation study was performed with MDA-MB-231 human breast cancer cell line and in nude mice model. RESULTS: The drug free 140 µg∙mL-1 PVA-SNT nanoparticles with 1.0 W∙cm-2 laser irradiation for 7 min proved to be an effective and optimized theranostic approach in terms of PAI guided triple negative breast cancer treatment. The PVA-SNT nanoparticles exhibits excellent biosafety, photostability, and strong efficiency as PAI contrast agent to visualize tumors. Histological analysis and fluorescence-assisted cell shorter assay results post-treatment apoptotic cells, more importantly, it shows substantial damage to in vivo tumor tissues, killing almost all affected cells, with no recurrence. CONCLUSION: This is a first complete study on computational simulations to estimate the plasmonic heat generation followed by drug free plasmonic PAI guided PTT for cancer treatment. This computationally-driven theranostic approach demonstrates an innovative thought regarding the nanoparticles shape, size, concentration, and composition which could be useful for the prediction of photothermal heat generation in precise nanomedicine applications.


Asunto(s)
Hipertermia Inducida , Neoplasias , Técnicas Fotoacústicas , Animales , Humanos , Ratones , Nanomedicina Teranóstica/métodos , Fototerapia/métodos , Plata/uso terapéutico , Técnicas Fotoacústicas/métodos , Terapia Fototérmica , Hipertermia Inducida/métodos , Ratones Desnudos , Neoplasias/tratamiento farmacológico
6.
Sensors (Basel) ; 22(10)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35632172

RESUMEN

In this study, we report an advanced fabrication technique to develop a miniature focused needle transducer. Two different types of high-frequency (100 MHz) transducers were fabricated using the lead magnesium niobate-lead titanate (PMN-0.3PT) and lithium niobate (LiNbO3) single crystals. In order to enhance the transducer's performance, a unique mass-spring matching layer technique was adopted, in which gold and parylene play the roles of the mass layer and spring layer, respectively. The PMN-0.3PT transducer had a 103 MHz center frequency with a -6 dB bandwidth of 52%, and a signal-to-noise ratio (SNR) of 42 dB. The center frequency, -6 dB bandwidth, and SNR of the LiNbO3 transducer were 105 MHz, 66%, and 44 dB, respectively. In order to compare and evaluate the transducers' performances, an ultrasonic biomicroscopy (UBM) imaging on the fish eye was performed. The results showed that the LiNbO3 transducer had a better contrast resolution compared to the PMN-0.3PT transducer. The fabricated transducer showed an excellent performance with high-resolution corneal epithelium imaging of the experimental fish eye. These interesting findings are useful for the future biomedical implementation of the fabricated transducers in the field of high-resolution ultrasound imaging and diagnosis purpose.


Asunto(s)
Agujas , Transductores , Animales , Diseño de Equipo , Radiografía , Ultrasonografía/métodos
7.
ACS Appl Mater Interfaces ; 14(22): 26295-26302, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35613454

RESUMEN

The spatial distribution of photogenerated carriers in atomically thin MoS2 flakes is investigated by measuring surface potential changes under light illumination using Kelvin probe force microscopy (KPFM). It is demonstrated that the vertical redistribution of photogenerated carriers, which is responsible for photocurrent generation in MoS2 photodetectors, can be imaged as surface potential changes with KPFM. The polarity of surface potential changes points to the trapping of photogenerated holes at the interface between MoS2 and the substrate as a major mechanism for the photoresponse in monolayer MoS2. The temporal response of the surface potential changes is compatible with the time constant of MoS2 photodetectors. The spatial inhomogeneity in the surface potential changes at the low light intensity that is related to the defect distribution in MoS2 is also investigated.

8.
Colloids Surf B Biointerfaces ; 214: 112458, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35306345

RESUMEN

Multifunctional nanomaterials developed from hydroxyapatite (HAp) with enhanced biological characteristics have recently attracted attention in the biomedical field. The goal of this study is to investigate the potential applications of cobalt-doped HAp (Co-HAp) in the biomedical imaging and therapeutic applications. The co-precipitation approach was used to substitute different molar concentrations of Ca2+ ions with cobalt (Co2+) in HAp structure. The synthesized Co-HAp nanoparticles were studied using various sophisticated techniques to verify the success rate of the doping method. The specific crystal structure, functional groups, size, morphology, photoluminescence property, and thermal stability of the Co-HAp nanoparticles were analyzed based on the characterization results. The computational modelling of doped and undoped HAp reveals the difference in crystal structure parameters. The cytotoxicity study (MTT assay and AO/PI/Hoechst fluorescence staining) reveals the non-toxic characteristics of Co-HAp nanoparticles on MDA-MB-231 breast cancer cell lines. The DOX was loaded onto Co-HAp, showing the maximum drug loading capacity for 2.0 mol% Co-HAp. Drug release was estimated in five different pH environments with various time intervals over 72 h. Furthermore, 2.0 mol% Co-HAp shows excellent fluorescence sensitivity with FITC-conjugated MDA-MB-231 cell lines. These results suggest that cobalt improved the fluorescence intensity of FITC-labeled HAp nanoparticles. This work highlights the promising application of Co-HAp nanoparticles with significant enhanced fluorescence activity for imaging-guided drug delivery system.


Asunto(s)
Durapatita , Nanoestructuras , Cobalto , Sistemas de Liberación de Medicamentos , Durapatita/química , Fluoresceína-5-Isotiocianato , Fluorescencia
9.
Photoacoustics ; 25: 100310, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34824975

RESUMEN

Photoacoustic (PA) microscopy allows imaging of the soft biological tissue based on optical absorption contrast and spatial ultrasound resolution. One of the major applications of PA imaging is its characterization of microvasculature. However, the strong PA signal from skin layer overshadowed the subcutaneous blood vessels leading to indirectly reconstruct the PA images in human study. Addressing the present situation, we examined a deep learning (DL) automatic algorithm to achieve high-resolution and high-contrast segmentation for widening PA imaging applications. In this research, we propose a DL model based on modified U-Net for extracting the relationship features between amplitudes of the generated PA signal from skin and underlying vessels. This study illustrates the broader potential of hybrid complex network as an automatic segmentation tool for the in vivo PA imaging. With DL-infused solution, our result outperforms the previous studies with achieved real-time semantic segmentation on large-size high-resolution PA images.

11.
Sci Rep ; 11(1): 15943, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354208

RESUMEN

Imaging modalities combined with a multimodal nanocomposite contrast agent hold great potential for significant contributions in the biomedical field. Among modern imaging techniques, photoacoustic (PA) and fluorescence (FL) imaging gained much attention due to their non-invasive feature and the mutually supportive characteristic in terms of spatial resolution, penetration depth, imaging sensitivity, and speed. In this present study, we synthesized IR783 conjugated chitosan-polypyrrole nanocomposites (IR-CS-PPy NCs) as a theragnostic agent used for FL/PA dual-modal imaging. A customized FL and photoacoustic imaging system was constructed to perform required imaging experiments and create high-contrast images. The proposed nanocomposites were confirmed to have great biosafety, essentially a near-infrared (NIR) absorbance property with enhanced photostability. The in vitro photothermal results indicate the high-efficiency MDA-MB-231 breast cancer cell ablation ability of IR-CS-PPy NCs under 808 nm NIR laser irradiation. The in vivo PTT study revealed the complete destruction of the tumor tissues with IR-CS-PPy NCs without further recurrence. The in vitro and in vivo results suggest that the demonstrated nanocomposites, together with the proposed imaging systems could be an effective theragnostic agent for imaging-guided cancer treatment.


Asunto(s)
Nanocompuestos/uso terapéutico , Técnicas Fotoacústicas/métodos , Nanomedicina Teranóstica/métodos , Animales , Línea Celular Tumoral , Quitosano/farmacología , Fluorescencia , Humanos , Nanocompuestos/análisis , Nanocompuestos/química , Neoplasias/terapia , Imagen Óptica/métodos , Fototerapia/métodos , Polímeros/farmacología , Pirroles/farmacología
12.
Nanomaterials (Basel) ; 11(7)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34361172

RESUMEN

We report an in situ characterization of transition-metal dichalcogenide (TMD) monolayers and twisted bilayers using a high-speed second-harmonic generation (SHG) imaging technique. High-frequency laser modulation and galvano scanning in the SHG imaging enabled a rapid identification of the crystallinity in the TMD, including the orientation and homogeneity with a speed of 1 frame/s. For a twisted bilayer MoS2, we studied the SHG peak intensity and angles as a function of the twist angle under a strong interlayer coupling. In addition, rapid SHG imaging can be used to visualize laser-induced ablation of monolayer and bilayer MoS2 in situ under illumination by a strong femtosecond laser. Importantly, we observed a characteristic threshold behavior; the ablation process occurred for a very short time duration once the preheating condition was reached. We investigated the laser thinning of the bilayer MoS2 with different twist angles. When the twist angle was 0°, the SHG decreased by approximately one-fourth of the initial intensity when one layer was removed. Conversely, when the twist angle was approximately 60° (the SHG intensity was suppressed), the SHG increased abruptly close to that of the nearby monolayer when one layer was removed. Precise layer-by-layer control was possible because of the unique threshold behavior of the laser-induced ablation.

13.
Photoacoustics ; 23: 100274, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34150499

RESUMEN

Photoacoustic microscopy (PAM) is an important imaging tool that can noninvasively visualize the anatomical structure of living animals. However, the limited scanning area restricts traditional PAM systems for scanning a large animal. Here, we firstly report a dual-channel PAM system based on a custom-made slider-crank scanner. This novel scanner allows us to stably capture an ultra-widefield scanning area of 24 mm at a high B-scan speed of 32 Hz while maintaining a high signal-to-noise ratio. Our system's spatial resolution is measured at ∼3.4 µm and ∼37 µm for lateral and axial resolution, respectively. Without any contrast agent, a dragonfly wing, a nude mouse ear, an entire rat ear, and a portion of mouse sagittal are successfully imaged. Furthermore, for hemodynamic monitoring, the mimicking circulating tumor cells using magnetic contrast agent is rapidly captured in vitro. The experimental results demonstrated that our device is a promising tool for biological applications.

14.
Int J Biol Macromol ; 183: 55-67, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33857520

RESUMEN

In recent years, suitable bioactive materials coated nanoparticles have attracted substantial attention in the field of biomedical applications. The present study emphasizes experimental details for the synthesis of boiling rice starch extract (BRE) coated iron oxide nanoparticles (IONPs) to treat cancer by photoacoustic imaging (PAI)-guided chemo-photothermal therapy. The solvothermal method was used to synthesize IONPs. The physical immobilization method helps to coat BRE-loaded doxorubicin (DOX) molecules on the iron oxide surface. In vitro drug release was estimated in basic (pH 9.0), neutral (pH 7.2), and acidic (pH 4.5) media for varying time periods using ultraviolet-visible spectroscopy. The chemical and physical properties of the synthesized spherical BRE-IONPs were characterized using sophisticated analytical instrumentation. A magnetic saturation experiment was performed with BRE-IONPs for evaluating possible hyperthermia in targeted drug delivery. The biological activity of the synthesized BRE-IONPs was investigated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and acridine orange/propidium iodide fluorescence cell viability study. BRE-IONPs showed excellent photothermal stability, with a high photothermal conversion efficiency (η = 29.73%), biocompatible property, and high near-infrared region absorption for PAI-guided PTT treatment. This study will provide a better understanding of rice starch as a suitable bioactive coating material for possible theranostic applications.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neoplasias Óseas/terapia , Doxorrubicina/farmacología , Nanopartículas Magnéticas de Óxido de Hierro/química , Oryza , Osteosarcoma/terapia , Técnicas Fotoacústicas , Terapia Fototérmica , Almidón/farmacología , Nanomedicina Teranóstica , Antibióticos Antineoplásicos/química , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Preparaciones de Acción Retardada , Doxorrubicina/química , Portadores de Fármacos , Liberación de Fármacos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Oryza/química , Osteosarcoma/diagnóstico por imagen , Osteosarcoma/metabolismo , Almidón/aislamiento & purificación
15.
Nanoscale ; 13(7): 4262-4268, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33595024

RESUMEN

Two-dimensional transition metal dichalcogenides (TMDCs) integrated into photonic structures provide an intriguing playground for the development of novel optoelectronic devices with improved performance. Here, we show the enhanced light emission from TMDC based van der Waals heterostructures through coupling with microsphere cavities. We observe cavity-induced emission enhancement of TMDC materials which varies by an order of magnitude, depending on the size of the microsphere and thickness of the supporting oxide substrate. Furthermore, we demonstrate microsphere cavity-enhanced electroluminescence of a van der Waals light emitting transistor, showing the potential of 2D material based hybrid optoelectronic structures.

16.
Sensors (Basel) ; 20(7)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260296

RESUMEN

In this study, a photoacoustic microscopy (PAM) system based on a multifocal point (MFP) transducer was fabricated to produce a large depth-of-field tissue image. The customized MFP transducer has seven focal points, distributed along with the transducer's axis, fabricated by separate spherically-focused surfaces. These surfaces generate distinct focal zones that are overlapped to extend the depth-of-field. This design allows extending the focal zone of 10 mm for the 11 MHz MFP transducer, which is a great improvement over the 0.48 mm focal zone of the 11 MHz single focal point (SFP) transducer. The PAM image penetration depths of a chicken-hemoglobin phantom using SFP and MFP transducers were measured as 5 mm and 8 mm, respectively. The significant increase in the PAM image-based penetration depth of the chicken-hemoglobin phantom was a result of using the customized MFP transducer.


Asunto(s)
Microscopía/métodos , Técnicas Fotoacústicas , Transductores , Animales , Pollos , Diseño de Equipo , Hemoglobinas/análisis , Procesamiento de Imagen Asistido por Computador , Carne/análisis , Microscopía/instrumentación , Ultrasonografía
17.
Int J Biol Macromol ; 155: 961-971, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31712157

RESUMEN

Multifunctional theranostic agents have recently attracted a great deal of attention in field of biomedicine. In the present work, folic acid-conjugated chitosan-functionalized graphene oxide (FA-CS-GO) has been developed as a new type of multifunctional nanomaterial for near-infrared fluorescence (FL)/photoacoustic imaging-(PAI) guided photothermal therapy (PTT) of cancer. In vitro results showed that the FA-CS-GO was able to completely destroy cancer cells under laser irradiation. More importantly, in vivo experiments showed that in the presence of targeted FA-CS-GO with laser irradiation, the tumors were completely inhibited, with no recurrence within 20 days. A high photoacoustic signal was detected in the tumor area of mice 24 h after the injection of FA-CS-GO, demonstrating the ability of FA-CS-GO to function as a new PAI contrast agent. Altogether, FA-CS-GO showed a high tumor-targeting efficiency, powerful photothermal effect, and outstanding PAI. This study is considered the first where multifunctional nanomaterials were used for highly efficient FL/PAI-guided tumor-targeted PTT, which is a promising avenue for theranostic nanomedicine.


Asunto(s)
Nanoestructuras/química , Neoplasias/terapia , Técnicas Fotoacústicas , Terapia Fototérmica , Nanomedicina Teranóstica , Animales , Línea Celular Tumoral , Quitosano/química , Femenino , Ácido Fólico/química , Grafito/química , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos
18.
J Control Release ; 311-312: 26-42, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31401198

RESUMEN

Developing a novel multifunctional theranostic agent for cancer combination therapy has attracted tremendous attention in recent years. In this report, we designed and developed a new multifunctional nanocarrier based on anti-epidermal growth factor receptor antibody-conjugated and paclitaxel loaded-thiol chitosan-layered gold nanoshells (anti-EGFR-PTX-TCS-GNSs) as a theranostic agent for the first time used for fluorescence/photoacoustic dual-modal imaging-guided chemophotothermal synergistic therapy. The resulting anti-EGFR-PTX-TCS-GNSs showed excellent biosafety, biocompatibility, broad near-infrared (NIR) absorbance, photostability, fast and laser irradiation-controllable drug release, and higher targeting efficiency for efficient chemophotothermal combination therapy of cancer under the guidance of photoacoustic imaging (PAI). The combination therapy was investigated in vitro and in vivo, displaying a powerful anticancer efficiency. More importantly, an in vivo experiment of anti-EGFR-PTX-TCS-GNSs with laser irradiation showed heavy damage to the tumor tissue, killing the tumor cells almost completely. Anti-EGFR-PTX-TCS-GNSs also showed a powerful capacity to visualize tumors, and therefore it is considered a new PAI contrast agent for subsequent therapy. Histological analysis and TUNEL assay further showed much more apoptotic cells, confirming the value of anti-EGFR-PTX-TCS-GNSs. Our results provide a new concept and a promising strategy to develop a novel multifunctional nanotheranostic agent for future clinical applications in diagnosis and therapy.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Antineoplásicos Fitogénicos/administración & dosificación , Quitosano/administración & dosificación , Receptores ErbB/antagonistas & inhibidores , Oro/administración & dosificación , Nanocáscaras/administración & dosificación , Paclitaxel/administración & dosificación , Animales , Anticuerpos Monoclonales/química , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Quitosano/química , Terapia Combinada , Diagnóstico por Imagen , Liberación de Fármacos , Receptores ErbB/inmunología , Eritrocitos/efectos de los fármacos , Femenino , Oro/química , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Nanocáscaras/química , Neoplasias/diagnóstico , Neoplasias/terapia , Paclitaxel/química , Técnicas Fotoacústicas , Compuestos de Sulfhidrilo/administración & dosificación , Compuestos de Sulfhidrilo/química , Nanomedicina Teranóstica
19.
Sensors (Basel) ; 19(3)2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30717095

RESUMEN

The present study illustrates the design, fabrication, and evaluation of a novel multifocal point (MFP) transducer based on polyvinylidene fluoride (PVDF) film for high-frequency ultrasound application. The fabricated MFP surface was press-focused using a computer numerical control (CNC) machining tool-customized multi-spherical pattern object. The multi-spherical pattern has five spherical surfaces with equal area and connected continuously to have the same energy level at focal points. Center points of these spheres are distributed in a linear pattern with 1 mm distance between each two points. The radius of these spheres increases steadily from 10 mm to 13.86 mm. The designed MFP transducer had a center frequency of 50 MHz and a -6 dB bandwidth of 68%. The wire phantom test was conducted to study and demonstrate the advantages of this novel design. The obtained results for MFP transducer revealed a significant increase (4.3 mm) of total focal zone in the near-field and far-field area compared with 0.48 mm obtained using the conventional single focal point transducer. Hence, the proposed method is promising to fabricate MFP transducers for deeper imaging depth applications.

20.
Carbohydr Polym ; 205: 340-352, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30446113

RESUMEN

This study reported a newly developed green synthesis method using chitosan and vitamin C to prepare porous flower-shaped palladium nanoparticles. We found that chitosan not only worked as a stabilizer but also as a size-control agent for the synthesis of these nanoparticles. The growth model of flower-shaped palladium nanoparticles was proposed to interpret mechanistic understanding. The obtained nanoparticles showed good biocompatibility and strong near-infrared absorption. The nanoparticles were successfully demonstrated to be highly efficient for both in vitro photothermal therapy and in vitro photoacoustic imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...